Charles Darwin (1809-1882) Crédito: National Portrait Gallery
O aparecimento da vida sobre a Terra continua a ser um dos maiores mistérios da ciência. Os primeiros naturalistas admitiam que a vida se criasse, espontaneamente, em matérias orgânicas, como palha, estrume, farinha, camisas suadas, etc. Era a ideia da geração espontânea que foi completamente eliminada por Louis Pasteur (1822-1895). Os seus trabalhos cuidadosos provaram, de uma vez para sempre, que não havia geração espontânea e que todos os seres vivos eram apenas gerados por outros da sua própria espécie. Isto deixava em aberto o problema da origem da primeira vida, e se esta poderia ter ocorrido noutros planetas, além do nosso.

Definir o que se entende por vida não é uma tarefa fácil e que pode ter diferentes e complexas abordagens. Geralmente os estudiosos estão de acordo que os seres vivos se caracterizam por quatro propriedades únicas: crescem, alimentam-se, reagem ao ambiente e reproduzem-se.

As bactérias são os mais simples dos seres vivos capazes de se multiplicar independentemente. Não incluímos aqui os vírus, que apenas se podem reproduzir no interior da célula de um hospedeiro adequado, cujo mecanismo desviam para os seus próprios fins, afastando-o das suas funções normais.

O problema da origem de sistemas naturais replicativos deve ser observado à luz da teoria da evolução de Charles Darwin (1809-1892). De acordo com este cientista todos os seres vivos descendem de uma forma primordial de vida, e os nossos conhecimentos actuais de bioquímica e genética confirmam essa convicção de uma forma triunfal. O problema da origem da vida deve ser empurrado para um tempo longínquo bem próximo da idade de origem do nosso planeta, há 4,5 mil milhões de anos.

Núcleo do cometa Halley fotografado pela sonda Giotto. Os cometas, como muitos asteróides primitivos, são ricos em matéria orgânica formada abióticamente. Crédito: ESA
Embora os primeiros vestígios fósseis, estruturas unicelulares semelhantes às actuais algas azuis-esverdeadas, datem de 3,5 mil milhões de anos, evidências isotópicas do carbono encontrado em algumas rochas com 3,8 mil milhões de ano apontam para que a vida já existisse por essa altura, empurrando a sua origem para o conturbado período de violência de impactos (cometas e asteróides) sobre a Terra, conhecido entre os geólogos como o Eon Hadeano.

Em 1905 o químico sueco Svante Arrhenius (1859-1927) sugeriu que a vida tivesse chegado à Terra sob a forma de germes, que haviam viajado dos abismos do espaço, sob a impulsão contínua exercida pelos raios de luz em partículas tão diminutas, uma ideia que ficou conhecida por panspermia e que ainda hoje tem os seus seguidores na dupla do falecido cosmólogo Fred Hoyle (1915-2001) e do astrofísico Chandra Wicramasinghe. Estes partidários do neo-panspermismo escreveram vários livros de popularização em que defendem que os cometas seriam os reservatórios de germens de vida que "semeariam" os planetas com vida. Foram ainda mais longe, dizendo que muitas das pestes e epidemias da história da humidade foram provocadas por vírus trazidos por cometas, uma ideia, no mínimo, engraçada mas que nunca encontrou qualquer aceitação entre a comunidade científica. Embora se saiba que os cometas possuem muita matéria orgânica, e alguns meteoritos primitivos, os conhecidos condritos carbonáceos, possam ter até 10% de matéria orgânica (alguma bem complexa com aminoácidos e as bases dos ácidos nucleicos), não há até hoje nenhuma evidência de que matéria viva exista nesses corpos. A matéria orgânica neles existente é formada em condições abióticas por reacções químicas na nébula solar perfeitamente compreendidas.

Em 1924 o bioquímico russo Alexandre Oparin (1894-1980) publicou uma brochura preliminar afirmando que "não existe diferença fundamental entre um organismo vivo e matéria inanimada. A complexa combinação de manifestações e propriedades e propriedades tão características da vida deve ter surgido do processo de evolução da matéria". Quatro anos depois, e independentemente de Oparin, o biólogo inglês J. Haldane (1892-1964) publicou um artigo sobre as possíveis condições iniciais que teriam permitido o aparecimento da vida na Terra. Considerava os raios ultravioletas provenientes do Sol extraordinariamente importantes. Quando essa força de energia actuou na atmosfera primitiva da Terra, formou-se uma imensa quantidade de compostos orgânicos. Segundo Haldane, muitos acumularam-se nos primitivos oceanos e foi, certamente neste caldo inicial que terá começado a vida. As sínteses químicas complexas foram facilitadas pela presença de alguns minerais, como as argilas e a pirite, que teriam actuado como substâncias catalisadoras, formando a agregação de moléculas cada vez mais complexas que acabaram por adquirir propriedades replicativas.

Em meados do século passado, algumas das sugestões iniciais de Oparin e Haldane começaram a ter uma abordagem laboratorial. Em 1953, o jovem Stanley Miller, na altura estudante de doutoramento na Universidade de Chicago, sob orientação do famoso químico Harold Urey (1893-1981) realizou uma experiência em que obteve uma variedade de compostos orgânicos simples a partir de uma mistura inorgânica semelhante ao que se supunha ser a atmosfera primitiva da Terra, semelhante à que se observa nos planetas gasosos. Miller fez atravessar uma mistura de metano, amoníaco e hidrogénio por uma descarga eléctrica num balão com água e, para fazer acumular os compostos não voláteis, destilava constantemente a água através de um circuito fechado. Ao fim de uma semana a água mostrava-se de um vermelho carregado e continha, além de ácidos simples como acético e fórmico, pelo menos dois aminoácidos. Além disso havia indícios da presença de ácido cianídrico, que se sabe ser um composto activo, capaz de dar origem a derivados muito mais complexos. Desde essa data essa experiência foi repetida e melhorada por numerosos investigadores e quase toda a "química da vida" foi produzida em laboratório.

Na verdade, sabe-se hoje que a atmosfera e a dinâmica da Terra inicial eram um pouco diferentes das que Miller reproduziu. Mais dióxido de carbono devia fazer parte da atmosfera e a violência dos impactos de corpos extraterrestres, alguns com dimensões de dezenas de quilómetros, poderiam ter contribuído com mais matéria orgânica sobre a Terra, ajudando ainda como processo energético que facilitava as sínteses de moléculas mais complexas. Porém, era de esperar que episódios desta violência e tão frequentes destruíssem os primeiros organismos replicadores, aqueles que estiveram na base de verdadeiras moléculas vivas, como o ARN e o ADN e, depois, dos primeiros seres vivos.

Fonte hidrotermal do Pacífico Este estudada pelo submersível Alvin. Na dependência destas fontes existem estranhos ecossistemas que em nada dependem da luz solar.Crédito: Woods Hole Oceanographic Institution
Desde finais dos anos 70, geólogos e biólogos marinhos têm descoberto inesperadas comunidades de seres vivos a profundidades oceânicas com mais de 3000 metros. O estudo destas exóticas comunidades vivas, na dependência de arqueobactérias que realizam uma quimiossíntese, na ausência total da luz solar, e associadas a fontes quentes vulcânicas, levam a crer que os primeiros organismos replicativos, as primeiras sínteses biológicas, podem ter tido origem nestes ambientes que certamente abundavam na Terra primitiva. É também possível, como o demonstram muitas experiências laboratoriais, que alguns minerais, como a pirite, bastante abundante naqueles ambientes, tenham servido como catalisadores químicos dessas primeiras sínteses biológicas.

Assim uma nova visão da origem da vida merece incluir as diferentes fontes representadas na Fig. 4, considerando os oceanos como o ambiente mais propício às sínteses, bem junto das fontes hidrotermais na dependência do calor vulcânico de algumas fracturas tectónicas. A contribuição cósmica também não pode ser esquecida, pois muita da matéria orgânica da Terra inicial teria sido transportada pelos cometas e pelos condritos carbonáceos. Daí que a origem da vida tenha de ser considerada na tripla perspectiva cósmica, química e geológica, em que astrónomos e geólogos têm cada vez um papel mais importante da resolução deste enigma.

Resumo das fontes de energia e local provável onde as sínteses bióticas ocorreram na Terra primitiva. Crédito: autor
Os primeiros seres fossilizados que se conhecem são os estromatólitos - estruturas calcárias resultantes da actividade de cianobactérias - com 3,46 mil milhões de anos. Esses procariatas - células simples em que o sistema genético ainda não estava incluído num núcleo - vão ao longo da maior parte da história da Terra ser os únicos habitantes, de que são conhecidas diferentes espécies. Aliás, ainda hoje são os mais abundantes. Descobertas dos últimos tempos mostram que muitas bactérias, nas vertentes dos dois grandes domínios da vida - Bacteria e Arqueo - estão adaptadas aos mais variados limites de pressão e temperatura, salinidade, radiação muito energética, ausência de Sol, e ambientes onde outrora não se imaginava a vida possível. A descoberta destes extremófilos, como são designados, é uma das maiores promessas para a astrobiologia. Noutros locais do universo, em planetas e em exóticos lugares os extremófilos estarão possivelmente bem representados. É o que tentaremos ver no próximo capítulo, onde visitaremos locais do sistema solar onde a vida possa ter existido ou exista mesmo na actualidade.